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1. 

The classic problem of the transverse vibrations of a string is of basic and
technological interest, since it constitutes an acceptable model for the dynamic
behavior of oceanographic cables and musical instruments among others [1, 2].
One of the important points in this area is the propagation of waves in systems
with interferences or in mediums with different propagation speed. However, the
literature shows, in general, very little information on the main aspects of
stationary waves in these types of systems. In this work we studied the behavior
of the transversal stationary waves in a mechanical system composed of three
strings connected to a ramification point (Figure 1). First, the spectrum of natural
frequencies of the system for a completely general case is presented. Then two
particularly simple situations are studied: the case of a string with three identical
branches and that of a string with two equal branches and the third of different
length. Results obtained for a string with branches of different chain lengths
are similar to those for a linear string of fixed ends in some particular
situations.

1.1. Equation of movement for a branched string

In order to calculate the frequency spectrum of a branched string, a separable
one-dimensional wave equation is considered for each of the branches of the string:

12ui(xi , t)
1t2 = d2

i
12ui(xi , t)

1x2
i

, (1)

where ui(xi , t) represents the position as a function of time and co-ordinate xi for
the i-branch and di is given by the relationship:

d2
i = ti /mi , (2)
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Figure 1. String of three branches fixed at their ends.

where mi is the mass by unit of length and ti is the tension in each branch. The
tensions ti are related by a static equilibrium condition.

In order to get the normal modes of vibration, we have the condition

v2 =
t1

m1
k2

1 =
t2

m2
k2

2 =
t3

m3
k2

3 , (3)

In this work, a system is analyzed where the lengths of each string are L1, L2

and L3 and the positions ui(xi , t) are zero at the fixed ends of the branches. The
boundary conditions to satisfy the system at the ramification point are the
conditions of continuity for the position and transversal stress for the branched
point [3, 4]. This last condition can be written as

t1
1u1(x1, t)

1x1
+ t2

1u2(x2, t)
1x2

+ t3
1u3(x3, t)

1x3
=0 at x1 = x2 = x3 =0. (4)

Then, to obtain a solution different from the trivial one, the following equation
must be satisfied:

sin (k1L1)[t2 sin (k3L3) cos (k2L2)+ t3 sin (k2L2) cos (k3L3)]

+ t1 cos (k1L1) sin (k2L2) sin (k3L3)=0. (5)

The wave numbers allowed for each branch and the spectrum of natural
frequencies can be determined from equations (5) and (3).

Now two particularly simple cases are analyzed where the stress and the masses
by unit of length are assumed the same for each branch (mi = m, ti = t, i=1, 2, 3).
For this configuration, it can be shown that the angle between each branch of the
strings should be 120°.

First, the spectrum of natural frequencies for a string of three branches with
identical length are analyzed and then the spectrum corresponding to a string
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composed of two branches with the same length and one of different length are
presented.

1.1.1. Three branches identical

If the three branches of the string have the same length L, then equation (5)
is reduced to

sin2 (Lk) cos (Lk)=0. (6)

The solutions of this equation are

kp =
pp

L
, p=1, 2 . . . , (7)

and

kq =
(2q−1)p

2L
, q=1, 2 . . . . (8)

For the values of kp that satisfy equation (7) the eigenfunctions for x=0 are
proportional to sin (pp)=0 for p=0, 1 . . . ; they have nodes at the branching
point. On the other hand, for the values of kp that satisfy equation (8) the
eigenfunctions have a crest at x=0.

The eigenfrequencies of the system can be obtained with equations (3), (7) and
(8):

vn =XT
m $np

2L%, n=1, 2 . . . . (9)

Then, a string with three identical branches has the same spectrum as a linear
string [5] with fixed ends and length 2L.

1.1.2. Two branches with the same length

Finally, the solution of a string composed of two branches of the same length
L and a third branch with length L2 is examined. In this case equation (5) is
reduced to the relationship

sin (kL)[sin (kL) cos (kL2)+2 sin (kL2) cos (kL)]=0. (10)

For this equation the solutions are

kp =
pp

L
, p=1, 2 . . . , (11)

and

tan (kqL)=−2 tan (kqL2), q=1, 2 . . . . (12)

Equation (11) gives the frequencies for those modes where the eigenfunctions
have a node at the branching point.
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T 1

Values of frequency coefficient Vp as function of L2 for a branched string (L=1)

L2

ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV
Mode (p) 0·01 0·1 0·5 1 2 10 100

1 3·141 (1p/L) 2·832 2·528 2·204 1·320 0·299 0·031 (1p/L2)
2 6·283 (12p/L) 3·141 3·141 3·141 2·423 0·600 0·062 (12p/L2)
3 9·424 (13p/L) 6·021 5·636 5·806 3·141 0·904 0·093 (13p/L2)

If L2�L then the first roots of equation (12) will be approximately the zeros
of tan (kqL2):

kq 1
qp

L2
. (13)

In this particular limit (L2�L) the system will show at low frequencies, similar
characteristic frequencies to those of a single string of length L2 with fixed ends.

On the other hand, if L2�L, the first solutions of equation (12) are those
corresponding to tan (kqL) equal to zero. These solutions are equivalent to those
obtained by equation (11). Then, for L2�L, the branched string behaves, at low
frequencies, like two independent linear strings of length L.

Table 1 shows the values for the frequency coefficient Vp =(m/t)1/2vp for a
branched string with two branches of the same length L and the third branch with
length L2. In this table the frequency coefficient for the three first modes are
evaluated for L=1 and L2 varying between 0·01 and 100.

For L2 =100 (where the condition of L2�L is satisfied) calculated values of Vp

are very similar to those corresponding to a string of length L2 with fixed ends.
On the other hand, if L2 =0·01 (L2�L) one obtains the same spectrum as that
for a linear string of length L, which is given by

vn =XT
m $np

L %, n=1, 2 . . . . (14)

The analysis presented here is also applicable to the study of stationary
acoustical or electromagnetic waves in systems where the problem can be described
by a unidimensional wave equation for each branch. In this work, only stationary
waves have been analyzed but the problem can be generalized to the study of wave
propagation [6].
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